Weak-Hamiltonian dynamical systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak-hamiltonian Dynamical Systems

A big-isotropic structure E is an isotropic subbundle of T M ⊕ T * M , endowed with the metric defined by pairing. The structure E is said to be the explicit expression of X H and of the integrability conditions of E under the regularity condition dim(pr T * M E) = const. We show that the port-controlled, Hamiltonian systems (in particular, constrained mechanics) [1, 4] may be interpreted as we...

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

jordan c-dynamical systems

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

15 صفحه اول

. SG ] 5 J an 2 00 7 Weak - Hamiltonian dynamical systems by Izu Vaisman

A big-isotropic structure E is an isotropic subbundle of T M ⊕ T * M , endowed with the metric defined by pairing, and E is said to be in-brackets) [7]. A weak-Hamiltonian dynamical system is a vector field X H such that (X H , dH) ∈ E ⊥ (H ∈ C ∞ (M)). We obtain the explicit expression of X H and of the integrability conditions of E under the regularity condition dim(pr T * M E) = const. We sho...

متن کامل

Hamiltonian Dynamical Systems without Periodic Orbits

The present paper is a review of counterexamples to the “Hamiltonian Seifert conjecture” or, more generally, of examples of Hamiltonian systems having no periodic orbits on a compact energy level. We begin with the discussion of the “classical” and volume– preserving Seifert conjectures. Then the constructions of counterexamples to the Hamiltonian Seifert conjecture in dimensions greater than o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2007

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.2769145